Finally AttoDuino connected with Linux? Sometimes, yes!

As I wrote back im May 2015, I couldn’t connect to AttoDuino using Linux (AttoDuino Getting started). In the past months I browsed the internet a lot, but without finding anything helpful. As it seems the Bluetooth stack’ documentation can be improved a lot …

So a sat again on my laptop and tried my luck again. After reconsidering the steps in my old post, I turned Bluetooth on and tried this command as root (address and channel I knew through bluetoothctl and sdptool search SP):

# rfcomm connect /dev/rfcomm0 00:04:3E:08:7B:69 1
^^^^^^^ ^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^ ^
command    device    bluetooth address channel

In return I go this on my screen:

Connected /dev/rfcomm0 to 00:04:3E:08:7B:69 on channel 1
Press CTRL-C for hangup

Well I thought that looked promising, no errors and such!

Continue reading Finally AttoDuino connected with Linux? Sometimes, yes!

DIY SMT soldering station

SMT soldering

I have been an electronics enthusiast for ages now. I had a long period of only repairing stuff and soldering the odd circuit, when I couldn’t find a ready-to-go product. The availability of microcontroller boards got me involved in soldering again, but as I grew older, the parts became smaller. Soldering SMT isn’t that easy without a proper soldering station and although I could afford buying a professional one, I started to search the internet for some ideas for a Do-It-Yourself one.

I was happily surpised when I found Martin Kumm’s post and realised that this could be what I was thinking of. Martin had a kit with the needed parts, which I bought right away. Continue reading DIY SMT soldering station

AttoDuino, Arduino 1.6.x and Linux

Last year I crowdfunded an interesting project called AttoDuino. The project itself calls it “Arduino on steroids” and its Texas Instruments ARM® Cortex®-M4F processor, which includes a math coprocessor that runs at 80 MHz. The AttoDuino is completely wireless, with built-in bluetooth, and can be programmed via bluetooth as well.

AttoDuino

With some delays it was only delivered this week and following the instructions from their website I found out that with the recent Arduino IDE changes, it’s not recognised as a third party hardware anymore and that there wasn’t a Linux version of the tools included.

It’d been a very long time since I spent time into setting up a cross compiling chain and I’d never before done any modifications to Arduino software, but I thought to give it a try. AttoDuino and its computing power could prove to be a solution to a hardware project of mine and if not, at least I could learn something. Continue reading AttoDuino, Arduino 1.6.x and Linux

MSP430FR5969 LaunchPad Development Kit

I won the MSP430FR5969 LaunchPad Development Kit in a Twitter contest run by Digi-Key. It features include MSP430 ULP FRAM technology based MSP430FR5969 16-bit MCU, 64KB FRAM, 2KB SRAM, 16-Bit RISC Architecture, up to 8-MHz FRAM access/ 16MHz system clock speed, 2 buttons and 2 LEDs for user interaction. More information can be found on TI’s LaunchPad website.

MSP 430 FR

Texas Instruments offers a cross compiler for its MSP 430 microcontrollers, but I haven’t done any work with it yet.

 

 

Atmel SAM D20 Xplained Pro Evaluation Kit

Elektor offered an Atmel SAM D20 Xplained Pro Evaluation Kit for very small money and publishes a programming course in the magazine. It uses a SAM D20J18 from the ARM-Cortex-M0+ family, has 256 kB flash memory, 32 kB SRAM and runs with up to 48 MHz.

SAM D20 Xplained Pro Evaluation Kit

I haven’t started working with it because the course uses Windows based software, which I won’t use. In the meantime the needed cross compiling chain is on my laptop and I hope I can spent some hours  for experiments in the near future.

1Sheeld

Here’s a good idea to start experimenting with Arduino, without investing into a plethora of shields: 1Sheeld. As the name somehow states, it’s one shield that can replace a lot (I counted 38 on their site). You will need a smartphone, though, because 1Sheeld connects with it via Bluetooth and simulates the shields using an app.

1Sheeld

Joypad and Mircroduino Core+

Once again I crowdfunded a hardware project, this time Joypad made by Microduino. Joypad is a board where a Microduino core is plugged in. It’s quite compatible with Arduino, so experimenting with it is easy.

Joypad with Microduino Core+

While communication with Microduino could be better, their service is very good. My first joypad had the wrong Microduino on it (Core instead of Core+) and was soldered badly. I got a replacement fast and for free. 10 of 10 points for that!

MicroPython pyboard v1.0

A very successful crowdfunding project by Damien George resulted in an interpreter called MycroPython version for microcontrollers and a very nice ARM based board to experiment with, called pyboard. The board presents itself as a USB storage device. Having the interpreter on board (pun intended) the code is just placed into a directory and runs after a reset. A 3-axis accelerometer and some other goodies on board, allow the user to start learning more about hardware and python.

pyboard

NavSpark GPS/GNSS

NavSpark GPS/GNSS is the result of a crowdfunding campaign, which aimed to create a Arduino compatible board, that includes GPS/GNSS hardware. It supports Arduino IDE for Linux und is populated with an 100MHz 32bit LEON3 Sparc-V8. 1024KB flash memory, 212KB RAM and a power consumption of ~80uA/MHz @ 3.3V makes it very interesting for mobile applications.

NavSpark

I haven’t done much more than a trying a few sketches out with that board, so I can’t really judge it.

Stellaris® LM4F120 LaunchPad Evaluation Kit

Stellaris® LM4F120 LaunchPad Evaluation Kit is populated with ARM® Cortex™-M4F-based microcontrollers from Texas Instruments. It comes with programmable user buttons and an RGB LED for custom applications. The board can be programmed using Linux, but I must confess, that when I tried the instructions found here, I failed. In the meantime I managed to compile and install a cross compiling chain for ARM processors and will give this board another try soon.

Stellaris® LM4F120 LaunchPad Evaluation Kit